Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5.
نویسندگان
چکیده
Design of dual antagonists for the chemokine receptors CCR2 and CCR5 will be greatly facilitated by knowledge of the structural differences of their binding sites. Thus, we computationally predicted the binding site of the dual CCR2/CCR5 antagonist N-dimethyl-N-[4-[[[2-(4-methylphenyl)-6,7-dihydro-5H-benzohepten-8-yl] carbonyl]amino]benzyl]tetrahydro-2H-pyran-4-aminium (TAK-779), and a CCR2-specific antagonist N-(carbamoylmethyl)-3-trifluoromethyl benzamido-parachlorobenzyl 3-aminopyrrolidine (Teijin compound 1) in an ensemble of predicted structures of human CCR2 and CCR5. Based on our predictions of the protein-ligand interactions, we examined the activity of the antagonists for cells expressing thirteen mutants of CCR2 and five mutants of CCR5. The results show that residues Trp98(2.60) and Thr292(7.40) contribute significantly to the efficacy of both TAK-779 and Teijin compound 1, whereas His121(3.33) and Ile263(6.55) contribute significantly only to the antagonistic effect of Teijin compound 1 at CCR2. Mutation of residues Trp86(2.60) and Tyr108(3.32) adversely affected the efficacy of TAK-779 in antagonizing CCR5-mediated chemotaxis. Y49A(1.39) and E291A(7.39) mutants of CCR2 showed a complete loss of CCL2 binding and chemotaxis, despite robust cell surface expression, suggesting that these residues are critical in maintaining the correct receptor architecture. Modeling studies support the hypothesis that the residues Tyr49(1.39), Trp98(2.60), Tyr120(3.32), and Glu291(7.39) of CCR2 form a tight network of aromatic cluster and polar contacts between transmembrane helices 1, 2, 3, and 7.
منابع مشابه
Association of CCR2 Gene but not CCR5 Gene Polymorphisms with Alzheimer’s Disease
Chemokines participate in the regulation of immune and inflammatory responses by interacting with their specific receptors on related immune and inflammatory cells such as B-lymphocytes, T-lymphocytes and antigen-presenting cells. Chemokines and their receptors are therefore considered to mediate inflammation and tissue damage in autoimmune disorders. The recent studies have revealed the genoty...
متن کاملAssociation of CCR5-59029 A/G and CCR2-V64I Variants with Renal Allograft Survival
Background: Despite advances in the medical care of renal transplant recipients which have led to an improvement in allograft survival, renal allograft rejection is still a major ob-stacle to successful organ transplantation. Understanding the mechanisms contributing to allograft rejection will be of great importance for the development of efficient antirejection strategies. Objective: The aim ...
متن کاملCcr2-64i and Ccr5 Δ32 Polymorphisms in Patients with Late-Onset Alzheimer’s disease; A Study from Iran (Ccr2-64i And Ccr5 Δ32 Polymorphisms in Alzheimer’s disease)
Objective(s) Alzheimer’s disease (AD) is a complex disease with multifactorial etiology. Inflammation has been proven to have an important role in the pathogenesis of AD. Both CCR2 and CCR5 genes expression increase in AD patients comparing to control subjects. CCR5 gene encodes a protein which is a member of the beta chemokine receptors family of integral membrane proteins. CCR5-Δ32 is a gene...
متن کاملStructural Insights from Binding Poses of CCR2 and CCR5 with Clinically Important Antagonists: A Combined In Silico Study
Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both ...
متن کاملHetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of "selective" antagonists.
Chemokine receptors constitute an attractive family of drug targets in the frame of inflammatory diseases. However, targeting specific chemokine receptors may be complicated by their ability to form dimers or higher order oligomers. Using a combination of luminescence complementation and bioluminescence resonance energy transfer assays, we demonstrate for the first time the existence of hetero-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 75 6 شماره
صفحات -
تاریخ انتشار 2009